Research Facilities at EPFL

DATE: April 2023
EPFL

IMPRESSUM

Publisher
EPFL VPA AVP Centres and Platforms
Anna Fontcuberta i Morral

Editorial team
Pierre-Yves Bollinger
Leila Ueberschlag

Contribution
All the persons in charge of the EPFL research facilities

Photos
Alain Herzog

Graphic design
EPFL Mediacom
Communication Visuelle
Ivan Savicev

Print
EPFL Repro-Print Centre

myclimate

IMPRIM'VERT®
The three main missions of EPFL are education, research and innovation. EPFL shared research facilities provide access to more than 430 cutting-edge technical equipment, instruments and tools, while sharing knowledge and expertise among users. They support our community and contribute to the fulfillment of EPFL’s missions. Each facility has a dedicated staff who maintain and set up the state-of-the-art equipment, and teach and train new operators and assist researchers in designing experiments and developing new techniques. Our research facilities operate following EPFL’s philosophy that sharing knowledge, resources and synergistic collaborations are key for the advancement of science and technology.

Used for over 600,000 hours each year, facilities support EPFL’s leading research and outreach, contributing to major publications in a variety of strategic fields.

This brochure provides an overview for each of the 40 EPFL shared research facilities being part of the AVP-CP and the different Schools with the goal to expedite connection to interested researchers.

Welcome to the EPFL research facilities ecosystem.

Anna Fontcuberta i Morral
Associate Vice President for Centers and Platforms

AVP-CP and ECO in brief

The Associate Vice Presidency for Centers and Platforms (AVP-CP)’s mission is to coordinate and enhance the activities of EPFL’s technology centers and facilities in order to achieve excellence in the creation of knowledge and the sharing of skills and resources.

The Equipment and Center Management Office (ECO), assists the Associate Vice Presidency for Centers and Platforms in achieving its objectives. ECO provides laboratories and research facilities with the necessary funding for the purchasing of large scientific equipment. In addition, ECO supports the facilities in establishing financial planning and calculating the pricing in coordination with the controlling team of the Vice Presidency for Finances.

Pierre-Yves Bolinger
Head of the Equipment and Centers Management Office
Map and affiliation of the facilities
Molecular and Hybrid Materials Characterization Center

Created in 2013 to provide the EPFL community with state-of-the-art molecular and hybrid materials characterization facilities
The facility

Facility accessible 24/7
2 dedicated staff members

> 10 instruments available:
 - AFM
 - DLS
 - DSC
 - Ellipsometry
 - Fluorescence spectroscopy
 - FT-IR spectroscopy
 - ITC
 - TGA
 - UV-Vis spectrophotometry
 - Water contact angle

Key target groups

- > 600 Users
- > 100 Laboratories

2 Academic
4 External users
5 Start-ups

Services

- User training
- User support
- Technical expertise of the equipment
- Security and safety

3 staff operated services:
 - AES
 - GPC
 - XPS

Major publications

Instrument use (hours)

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>3196.2</td>
</tr>
<tr>
<td>2019</td>
<td>3706.5</td>
</tr>
<tr>
<td>2018</td>
<td>3234.7</td>
</tr>
<tr>
<td>2017</td>
<td>4485.2</td>
</tr>
<tr>
<td>2016</td>
<td>7113.8</td>
</tr>
<tr>
<td>2015</td>
<td>5028.2</td>
</tr>
</tbody>
</table>

Contact

Manager
Yann Lavanchy
EPFL STI MHMC MHMC-GE
MXD 115 (Bâtiment MXD)
Station 12
CH-1015 Lausanne

+41 21 693 28 49
yann.lavanchy@epfl.ch
X-ray Diffraction and Surface Analytics Platform

Characterization of nanoscopic, atomic, electronic and vibrational structure using X-ray Scattering and Spectroscopic Methods, on bulk and surfaces.
The facility

4 dedicated staff scientists

11 instruments on 2 EPFL sites (Lausanne, Sion):
- 4 Materials diffractometers for XRD, GIWAXS, SAXS, HRXRD and XRR
- 3 Single crystal diffractometers
- 1 XPS/UPS/AES
- 1 Raman (3 lasers) with TERS attachment
- 2 AFM
- Large range of in-situ conditions (temperature, atmosphere, pressure)

Services

- Full data collection and analysis on all methodologies provided by the facility’s infrastructure, article contributions.
- Publication quality CIF files.
- User training (experiment and analysis).
- Scientific user support.
- Experiment design and elaboration of advanced projects, sample cell, method and data analysis development.
- Support in preparing and conducting Synchrotron experiments.
- Point of contact to other Swiss facilities.
- In-depth courses in the doctoral school

Key target groups

- >250 users since 2019
- Researchers and students at EPFL working on materials synthesis and properties
- 45 EPFL laboratories from the schools of SB (ISIC, IPHYS), STI (IMX, IEL, IGM, IMT), ENAC (IIE, IIC)
- External academic: UNIFR, UNIGE, HES, CHUV, CERN, ESRF & CSEM
- 12 companies (as of 2020)

Major publications

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal</th>
<th>External academic</th>
<th>Industrial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td>174</td>
</tr>
<tr>
<td>2016</td>
<td>139</td>
<td></td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>2015</td>
<td>74</td>
<td></td>
<td></td>
<td>74</td>
</tr>
</tbody>
</table>

Contact

Platform Leader
Dr. Pascal Schouwink
EPFL Valais Wallis
EPFL SB ISIC-XRDSAP
Rue de l’Industrie 17
CH-1951 Sion

+41 21 695 82 80
pascal.schouwink@epfl.ch
Crystal Growth Facility

Growth and Characterization of Materials from Bulk Single Crystals to Nanostructures
The facility

The Crystal Growth Facility is a complex of chemistry labs, furnace rooms, sample preparation labs for polishing and cutting samples, and material characterization labs.

4.9 dedicated staff members + 2 apprentices «Laborant Physique»

Instruments :
- 50 furnaces for crystal growth
- 4 powder and thin-film X-ray diffractometers
- 2 single crystal X-ray diffractometers
- 1 Laue camera
- 2 PPMS
- 1 Raman spectrooscope
- 1 UV-Vis spectrometer

Key target groups

- 60 EPFL labs and 5 startups
- Fundamental Science and Engineering
- Life and Environmental Science

Major publications

1. Arakcheeva, A; Bi, WH; Baral, PR; Magrez, A. Self-flux-grown Ba4Fe4ClO9.5-x crystals exhibiting structures with tunable modulation. CrystEngComm, 2022, 24, 3529-3536.
2. Zhang, J; Bialek, M; Magrez, A; Yu, H; Ansermet, JP. Antiferromagnetic resonance in TmFeO3 at high temperatures. Journal of Magnetism and Magnetic Materials, 2021, 523, 167562.
4. Huang, P; Schönberger, T; Canton, M; Heinen, L; Magrez, A; Rosch, A; Carbone, F; Ronnow, HM. Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase. Nature Nanotechnology, 2020, 15, 761-767.
5. Hegde, NG; Levatic, I; Magrez, A; Ronnow, HM; Zvokic, I. Magnetic dynamics across the in-field transition in Ca3Co2O6. Physical Review B, 2020, 102, 104418.

Services

Inorganic as well as organic crystals can be grown by Chemical Vapor Transport, Bridgman process, Flux method, Floating zone as well as by wet chemical processes (hydrothermal, reflux...).

Characterization of samples by Raman spectroscopy (between 80K and 850K), by X-Ray diffraction (single crystals, powders, thin films), by low temperature XRD (down to 3K) as well as high temperature XRD (up to 1200°C). Magnetometry (VSM and ACMS), Resistivity, Heat Capacity, Thermal Conductivity measurements can be performed in our PPMS from 17K to 400K under magnetic field (up to 14T).

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>311</td>
</tr>
<tr>
<td>2019</td>
<td>267</td>
</tr>
<tr>
<td>2018</td>
<td>230</td>
</tr>
<tr>
<td>2017</td>
<td>138</td>
</tr>
<tr>
<td>2016</td>
<td>81</td>
</tr>
</tbody>
</table>

Contact

Head of the Crystal Growth Facility
Dr. Arnaud Magrez

Crystal Growth Facility
EPFL SB IPHYS IPHYS-CGCP
PH D2 391
Station 3
CH-1015 Lausanne

+41 21 693 76 56
arnaud.magrez@epfl.ch

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>311</td>
</tr>
<tr>
<td>2019</td>
<td>267</td>
</tr>
<tr>
<td>2018</td>
<td>230</td>
</tr>
<tr>
<td>2017</td>
<td>138</td>
</tr>
<tr>
<td>2016</td>
<td>81</td>
</tr>
</tbody>
</table>
School of Basic Sciences

ISIC-NMRP

Nuclear Magnetic Resonance Platform

Characterization of material and molecules by solid and liquid state Nuclear Magnetic Resonance
The facility

3 staff members

24 NMR systems on 3 sites (BCH, CH, Sion)
- 7 spectrometers 400 MHz with autosampler
- 6 spectrometers 400MHz manual
- 3 high resolution / high sensitivity NMR spectrometers 500, 600 800 MHz equipped with cryoprobes
- 4 solid state NMR systems at 400 (2x), 500 and 900 MHz operating at low temperature (100 K) very fast spinning speed (110 kHz)
- 2 gyrotrons, 1 klystron, 1 d-DNP prototype

Yearly:
50’000h acquisition (110’000 NMR spectra)

Key target groups

More than 400 users, mainly from academic research groups (392) but as well from start-ups and industry (24)

More than 60 EPFL laboratories actives in:
- Chemistry (ISIC) : 33 labs
- Life sciences (SV) : 6 labs
- Material science (IMX, IMT, IGM) : 20 labs
- Physics (IPHYS) : 2 labs

External academics research groups (CERN, ETHZ UNIL, UniNE, UniBe, UNIGE, ...)

6 start-ups and companies

Services

- Open access to the NMR spectrometers
- Training and support on the instruments for the NMR users
- Help, advises and development for specific research projects
- Solid-state NMR advises, samples preparation, measurements and analysis
- Maintenance and troubleshooting of the EPFL NMR spectrometer park
- In-depth courses in the doctoral school

Major publications

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>418</td>
</tr>
<tr>
<td>2020</td>
<td>360</td>
</tr>
<tr>
<td>2019</td>
<td>370</td>
</tr>
<tr>
<td>2018</td>
<td>370</td>
</tr>
<tr>
<td>2017</td>
<td>350</td>
</tr>
</tbody>
</table>

Contact

Platform Leader
Dr. Aurélien Bornet
ISIC NRM Platform
EPFL SB ISIC-NMRP
BCH 1537 (Batochime UNIL)
Station 6
CH-1015 Lausanne
+41 21 693 71 61
aurelien.bornet@epfl.ch
Mass Spectrometry and Elemental Analysis Platform

Structural analysis of samples by Mass Spectrometry and Elemental Analysis
The facility
5 staff members (4.2 FTE)
12 instruments on 2 sites (Lausanne, Sion)
• 1 GC-MS (liquid and headspace)
• 1 Ion Trap LC-MS
• 2 LC-MS QTOF
• 3 High resolution Orbitrap FT-MS
• 2 MALDI-TOF
• 1 ICP-MS
• 1 ICP-OES
• 1 CHNS/O analyzer

Yearly:
More than 10000 samples submitted

Key target groups
More than 350 users, from academic to private external users

84 EPFL laboratories:
• FSB: ISIC, IPHYS
• FSV: IBI, GHI, ISREC
• STI: IMX, IMT
• ENAC: IIE

External academic:
UNIL, UNIFR, UNIGE, UNIBE,
UNINE, UNIBAS, ETHZ, CHUV, HEFR, HEVS...

20 start-ups and companies

Services
• Mass spectrometry analyses in many fields of application from small molecules to large biomolecules
• CHNSO analyses
• Scientific support to research groups
• Submission and results though eln.epfl.ch
• In-house tools for advanced data analysis (ms.epfl.ch)
• Open access to MS instruments (training and support)
• In-depth courses in the doctoral school

Major publications

Number of samples

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>22000</td>
</tr>
<tr>
<td>2020</td>
<td>15248</td>
</tr>
<tr>
<td>2019</td>
<td>16403</td>
</tr>
<tr>
<td>2018</td>
<td>16078</td>
</tr>
<tr>
<td>2017</td>
<td>11379</td>
</tr>
<tr>
<td>2016</td>
<td>9630</td>
</tr>
<tr>
<td>2015</td>
<td>7180</td>
</tr>
<tr>
<td>2014</td>
<td>8625</td>
</tr>
</tbody>
</table>

Contact
Platform contact
Dr. Laure Menin
ISIC NRM Platform
EPFL SB ISIC-MSEAP
BCH 1526
Batochime UNIL
Av. F.-A. Forel 3
CH-1015 Lausanne

+41 21 693 94 64
laure.menin@epfl.ch
Central Environmental Laboratory

Provides scientific support and services in the fields of environmental analytical chemistry and molecular biology
The facility

5 FTE dedicated staff members
Senior scientists and laboratory technicians

Cutting-edge equipment:
- LC-MS/MS and HR-MS
- Ion chromatography
- GC-MS/MS and Py-GC/MS
- ICP-OES and ICP-QQQ
- SP-ICP/MS
- Carbon and nitrogen analysis
- IR spectroscopy and chemical imaging
- Fluorescence spectrophotometry
- Automated nucleic acid extraction
- PCR and qPCR
- Cell counter
- Sample preparation
- DNA/RNA extraction robots
- Genes detection by PCR, cloning or sequencing
- Community analysis using NGS methods
- Cell cultures and physiology

Services

- Advises and development for specific research projects
- Advises on samples preparation, measurements and analysis
- Training and support of the platform users
- Open access instruments
- Maintenance and troubleshooting of the analytical park

Key target groups

- Researchers in the fields of environmental science and engineering, material science, chemistry, biology.
- PhD students, postdocs, senior scientists and Master students

Additional groups:
- Scientists at Swiss or other Universities
- Companies and start-up

Major publications

5. Angélique Moraz and Florian Breider, Detection and Quantification of Nonlabeled Polystyrene Nanoparticles Using a Fluorescent Molecular Rotor, Analytical Chemistry 2021 93 (45), 14976-14984.

Number of analytical requests

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal</th>
<th>Academic</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>163</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact

Head of the lab
Dr. Florian Breider

EPFL ENAC IE GR-CEL
GR A1 382
Station 2
CH-1015 Lausanne

+41 21 693 08 69
florian.breider@epfl.ch
PTCB

Biomolecular Screening Facility

The PTCB is the first and largest academic screening facility in Switzerland for chemical biology and drug discovery.
The facility

9 (78 FTEs) specialized staff members

Over 15 years of multidisciplinary expertise.

Screening instrumentation and infrastructure
- 3 Integrated robotic workstations
- 9 Fluidic/washer dispensers
- 3 Automated microscopes
- 4 Multimode plate readers
- 2 Cell culture labs
- Proprietary LIMS and IT infrastructure

>100,000 chemical compounds available
- Clinical drugs
- Chemical diverse and focused collections

Key target groups

>80 users from 32 different research groups:
- EPFL labs: SV, STI and SB
- Non-profit Swiss institutions:
- UNIGE, UNIL, CMU, CHUV, UNIBAS, ETHZ, UNIBE, UNIZH, IRO-Bellinzona, HES-SO VS, Hôpital Jules Gonin, Transfusion interrégionale CRS
- Industrial partners: SME’s and start-ups

Major publications

Services

Operational axes:
- Screening campaigns, from assay design to hits validation (6 - 18 months). Over 20 screening projects managed per year.
- Custom chemical synthesis and medicinal chemistry (Hits to Leads)
- Open access to specific instrumentation

Innovative research in chemical biology:
- Probes and novel screening approaches

Education:
- Teaching and hands-on workshops
- Master students supervision

Number of research groups

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>31</td>
</tr>
<tr>
<td>2019</td>
<td>32</td>
</tr>
<tr>
<td>2018</td>
<td>30</td>
</tr>
<tr>
<td>2017</td>
<td>35</td>
</tr>
<tr>
<td>2016</td>
<td>31</td>
</tr>
<tr>
<td>2015</td>
<td>28</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Prof. Gerardo Turcatti

EPFL SV PTECH PTCB
AAB 0 03 (Bâtiment AAB)
Station 15
CH-1015 Lausanne

+41 21 693 96 66
gerardo.turcatti@epfl.ch
The PTPSP offers expertise, training and instrumentation for production, purification and biophysical/structural characterization of proteins and protein complexes.
The facility

The mission of PTPSP is to advise, train and connect researchers in protein sciences and integrative structural biology.

A team of 8 (6.4 FTE) structural biologists and biochemical experts are of service to the users from the production and purification of proteins to their atomic structural characterizations.

The PTPSP provides access to state of the art biophysical instruments; such as DLS, SPR, BLI, CD, MP.

Collaboration with top-notch Swiss facilities such as the Swiss Light Source (SLS-PSI) for X-ray crystallography and the Dubochet center for Imaging (DCI) for single-particle cryoEM.

Services

PTPSP is a hub for production and structural studies of macromolecules

- Design of vectors for protein expression
- Production of proteins in various hosts: mammalian, insect or bacterial cells
- Purification of proteins via different techniques
- 3D atomic structures determination of macromolecules by X-ray crystallography, BioNMR and single-particle cryoEM
- Biophysical characterization of proteins and protein-protein interactions

Key target groups

- All scientists are welcome, with or without expertise in protein sciences or structural biology.
- Follow-up of projects on a regular basis to achieve user goals.
- Promote training of students and scientists
- 41 EPFL labs (from SV, STI, SB, ENAC schools) and 37 non-EPFL labs or start-ups benefit from our know-how, services and instrumentation.
- Teach at Master and PhD courses and participate in outreach to general public.

Major publications

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>149</td>
</tr>
<tr>
<td>2019</td>
<td>147</td>
</tr>
<tr>
<td>2018</td>
<td>140</td>
</tr>
<tr>
<td>2017</td>
<td>139</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Dr. Florence Pojer

EPFL SV PTECH PTPSP
A1 2147 (Bâtiment A1)
Station 19
CH-1015 Lausanne

+41 21 693 19 76
florence.pojer@epfl.ch
The PTEG provides access to a powerful set of workflows for the functional and quantitative analysis of genomes and transcriptomes, both at the tissue and single-cell levels.
The facility

The facility’s team is composed of 6 (5.2 FTEs) specialized staff members.

- 5 next-generation sequencers
- 3 single-cell genomics instruments
- 4 quantitative PCR instruments, both classical or microfluidics-based
- 2 automated pipetting platforms
- 4 instruments for DNA/RNA quality control
- 1 spatial transcriptomics service

Key target groups

Our users are provided with genomics/sequencing tools to study a very wide range of topics.

- 54 labs used our services in 2020
- 36 from the EPFL School of Life Sciences
- 7 from other EPFL labs
- 11 from other academic institutes

Services

We provide a diverse set of protocols and instruments for the functional and quantitative analysis of genomes (DNA) and transcriptomes (RNA), both at single-cell level or on bulk cell populations. This comprises next-generation sequencing, classical or high-throughput microfluidics-based qPCR technologies and spatial transcriptomics analyses. In addition, we enable manipulation of the cellular gene expression program by providing different genome-wide collections of genes.

Major contributions

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>234</td>
</tr>
<tr>
<td>2019</td>
<td>215</td>
</tr>
<tr>
<td>2018</td>
<td>208</td>
</tr>
<tr>
<td>2017</td>
<td>186</td>
</tr>
<tr>
<td>2016</td>
<td>214</td>
</tr>
<tr>
<td>2015</td>
<td>194</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Dr. Bastien Mangeat
EPFL SV PTECH PTEG
SV 1535 (Bâtiment SV)
Station 19
CH-1015 Lausanne
+41 21 693 71 13
bastian.mangeat@epfl.ch
The PTP provides top-notch mass spectrometry-based proteomic technologies and relevant training to the EPFL Life Sciences community and collaborators.
The facility

The facility is equipped with four state-of-the-art mass spectrometers designed to provide fast and sensitive proteome characterization along with accurate quantitation. The machines are operated by a highly experienced scientific team composed of four mass spectrometry specialists (4.8 FTEs) each of whom has more than ten years of experience.

Additionally, the team includes a dedicated bioinformatician (0.8 FTE) with extensive experience in establishing sophisticated data-analysis workflows.

Services

We offer strong scientific support for proteomics-related projects, across the whole journey of a project: from experimental design to data interpretation. We can successfully address a number of biological questions related but not limited to:

- protein identification and characterization of post-translational modifications (PTMs)
- absolute and relative quantitation of proteins and PTMs across multiple samples
- investigation of protein complexes and protein-protein interactions

Key target groups

Our users include students and researchers interested in addressing their biological questions by using mass spectrometry-based proteomics. The team offers its expertise to the EPFL Life Sciences community and collaborators throughout Switzerland and beyond. In addition, the team is actively participating in consulting, teaching and training of students and researchers who are interested in the field of mass spectrometry-based proteomics.

Major publications

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>User Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>61</td>
</tr>
<tr>
<td>2019</td>
<td>90</td>
</tr>
<tr>
<td>2018</td>
<td>64</td>
</tr>
<tr>
<td>2017</td>
<td>69</td>
</tr>
<tr>
<td>2016</td>
<td>81</td>
</tr>
<tr>
<td>2015</td>
<td>84</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Dr. Maria Pavlou

EPFL SV PTECH PTP
AI 0149 (Bâtiment AI) Station 19
CH-1015 Lausanne

+41 21 693 97 52
maria.pavlou@epfl.ch
The PTBTG provides expertise in genetic engineering and gene delivery using viral vector technologies.
The facility

5 (4.6 FTEs) specialized staff members

- Non-GMP viral vector production
- Genetic engineering
- Cell culture in shaker flasks
- Downstream chromatography process
- Ultracentrifugation
- Vector analytics (digital PCR, nanoparticle analysis)
- Expertise in the in vivo application of viral vector technologies
- Technology transfer

Key target groups

- Research labs using vector-based gene delivery
- Companies active in gene therapy
- Research consortia and interest groups aiming at the development of gene therapies for unmet clinical needs

Services

- Solutions for the scalable production of both AAV and lentiviral vectors
- Production of viral vectors for genetic manipulations, including gene transfer, gene silencing and gene editing
- Design and engineering of novel viral vectors
- Analytical characterization of viral vectors
- Assay development
- Support in the early development of innovative gene therapies, in particular for the central nervous system and sensory organs

Major publications

5. PTBTG has contributed to the development of gene therapy programs with Arctos Medical AG (acquired in 2021 by Novartis) and AvrionTx (a spin-off of EPFL).

Number of users & vectors produced

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Users</th>
<th>Number of Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>91</td>
<td>146</td>
</tr>
<tr>
<td>2020</td>
<td>74</td>
<td>128</td>
</tr>
<tr>
<td>2019</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

Contact

Head of platform
Dr. Bernard Schneider

EPFL SV PTECH PTBTG
B3 5 212.118 (C. Biotech)
Ch. des Mines 9
CH-1202 Genève

+41 21 693 95 19
bernard.schneider@epfl.ch
The aim of the PTCF is to provide advanced instrumentation as well as high-level technical and scientific expertise in flow and mass cytometry and cell sorting.
The facility

The facility's team is composed of 4 (3.8 FTEs) specialized staff members.

The PTCF is equipped with state-of-the-art equipment:
- 1x BC Cytoflex
- 2x Beckman Coulter Gallios
- 1x Full Spectrum Aurora
- 3x BD LSRll Fortessa
- 1x Attune NxT
- 1x BC Astrios EQ
- 2x Aria Fusion
- 1x CyTOF Helios

Key target groups

The PTCF provides access to flow cytometry, mass cytometry and cell sorting to a wide range of users from the EPFL and UNIL, and other academic research institutions and companies in Switzerland and abroad.

We offer the possibility to generate high-quality reproducible research data by providing access to the state-of-the-art regularly maintained equipment in combination with implementation of quality management procedures.

Services

- Training and access to the self-served analyzers
- Facility operated cell sorting services
- Advice regarding cell preparation and choice of fluorochromes
- Help with data acquisition, analysis and interpretation
- Technical support and troubleshooting

Major publications

Activity hours

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>5315</td>
</tr>
<tr>
<td>2019</td>
<td>5376</td>
</tr>
<tr>
<td>2018</td>
<td>6073</td>
</tr>
<tr>
<td>2017</td>
<td>6657</td>
</tr>
<tr>
<td>2016</td>
<td>5913</td>
</tr>
<tr>
<td>2015</td>
<td>8291</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Miguel Garcia
EPFL SV PTECH PTCF
AI 0147 (Bâtiment AI)
Station 15
CH-1015 Lausanne

+41 21 693 09 01
miguel.garcia@epfl.ch
The PTH prepares samples for light microscopic study of organs, organoids and other special biological specimens.
The facility

The facility is located at the SV Faculty in the AI building. It houses the following equipment:

- VIP6 tissue processor, paraffin dispenser
- 4 cryostats for frozen sectioning
- 4 microtomes for paraffin sectioning
- 4 sliding microtomes
- 1 vibratome
- Prisma Autostainer and coverslipper
- Ventana Discovery ULTRA Immunostainer
- Lunpahore custom microfluidic setup
- X-clarity clearing system

The facility's team is composed of 6 (3.1 FTEs) specialized staff members.

Key target groups

The majority of the PTH users are members of the EPFL community and particularly the SV Faculty.

Researchers of academic laboratories from the Lausanne area and broader area of Romandie can as well process samples at the facility.

Services

On one hand, the facility assists researchers in the optimization of histological approaches specific for each scientific project. EPFL members can get training on the instruments.

On the other hand, technicians of the facility perform work for researchers: tissue processing, sectioning, histological stains, immunodetection of proteins, detection of mRNA and miRNA, and implementation of newly available techniques (multiplexing and spatial transcriptomics).

As a part of a collaboration with the University of Bern, a trained veterinary pathologist helps the facility to diagnose and interpret morphologic lesions within organs.

Major publications

N° of work and training requests

<table>
<thead>
<tr>
<th>Year</th>
<th>Work Requests</th>
<th>Training Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>291</td>
<td>245</td>
</tr>
<tr>
<td>2020</td>
<td>245</td>
<td>287</td>
</tr>
<tr>
<td>2019</td>
<td>346</td>
<td>312</td>
</tr>
<tr>
<td>2018</td>
<td>312</td>
<td>291</td>
</tr>
<tr>
<td>2017</td>
<td>363</td>
<td>312</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Dr. Jessica Sordet-Dessimoz

EPFL SV PTECH PTH
AI 0142 (Bâtiment AI)
Station 19
CH-1015 Lausanne

+41 21 693 07 39
jessica.dessimoz@epfl.ch
The CPG is a Center of expertise in animal experimentation, which provides services and support in *in vivo* research and allows high quality scientific research by best practices in animal care, welfare and well-being.
The facility

Team of 65 people (60.10 FTE)

- Infrastructures for importing, housing and experimentation on laboratory rodents (mice and rats) and laboratory aquatic animals (zebrafish)
- Biosafety Level 1, 2 and 3 housing and experimental units
- Scientific equipment for neurobiology and cardio-metabolic tests, blood analysis, in vivo (e.g. Fluorescence, X-ray) and optical imaging
- 450 mouse transgenic lines housed in the facility
- 55 mouse lines cryopreserved per year, 20 mouse embryo transfers per year
- 40 new transgenic zebrafish lines established per year

Key target groups

- All EPFL research groups that need to perform animal experiments with vertebrates for a given project
- Research groups can perform the experimental work themselves if duly accredited or can benefit from the service activities of the Center
- Fee-for-services for external academic collaborators and industrial partners

Services

- Expertise to design and generate genetically modified models
- Housing, husbandry, breeding and colony management of rodents and zebrafish
- Standardized and custom phenotyping assays across all major physiological and pathological systems
- Advanced imaging techniques and optical methods for in vivo imaging
- Cryopreservation and recovery including import, archiving, and distribution
- Research support from project managers, animal care and veterinary professionals
- Communication about animal experimentation

Major publications

Number of groups

<table>
<thead>
<tr>
<th>Year</th>
<th>EPFL-SV</th>
<th>EPFL-STI</th>
<th>EPFL-SB</th>
<th>External</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>31</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>2020</td>
<td>42</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>2019</td>
<td>44</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>2018</td>
<td>46</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>2017</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>2016</td>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>55</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Dr. Xavier Warot

EPFL SV CPG-GE
SV 1843 (Bâtiment SV)
Station 19
CH-1015 Lausanne

+41 21 693 18 69
xavier.warot@epfl.ch
Technology Platform for Hydraulic Machines

Leader and independent on hydraulic reduced scale model tests, Innovative in hydroelectric R&D as renewable energy
The facility

Highly qualified staff of 16 FTE.

- Over 40 years of expertise.
- Independence from hydraulic manufacturers.
- Tests of reduced scale model for hydroelectric projects according to the IEC 60193 standards R&D in hydraulic machines (experimental and numerical), in advanced measurement techniques
- Research competences to propose new solutions to the hydropower sector to challenging into the renewable energy policies.

Key target groups

- Manufacturers of hydraulic machines and companies operating a park of hydroelectric power plants
- Research and development organizations
- Internal users

Services

- Model tests, on site measurements and/or expertise
- Development of new measurements techniques and/or functionalities of the test rigs
- Expertise of the design office and/or the workshop
- 6-10 model tests per year

Major publications

Number of tests (1 test = 3 months on average)

- 2021: 7
- 2020: 13
- 2019: 13
- 2018: 12
- 2017: 12
- 2016: 12
- 2015: 11

Contact

Deputy director
Dr. Philippe Cerrutti
EPFL PTMH
AU -1 7014
Av. de Cour 33bis
CH-1007 Lausanne
+41 21 693 25 29
philippe.cerrutti@epfl.ch
SKIL and SPOT are two complementary spaces aiming at encouraging student initiative, creativity, and interdisciplinarity in a workshop environment and allowing the realization of hands-on projects.
The facilities

The SKIL is dedicated to prototyping with specific expertise on wood and the SPOT support advanced prototyping in mechanics and electronics including one immersive room. Covered fields and available equipments are:

- Meeting and gathering spaces with coffee machine
- Ideation: ideation material, projection screen, material library and computers
- Immersion: VR headsets, motion capture and immersive room
- Mechanical workshop: laser cutter, lathe, milling machine, welding machines, power tools
- Maker: 3D printers, laser cutter, vinyl cutting machines, sewing/embroidery machines
- Electronics workshop: soldering station, electronic benches, pick and place station, welding oven
- Wood workshop: wood saws, CNC milling machine and power tools

Key target groups

The target group is mainly the Bachelor and Master students at EPFL who work in a hands-on project or are willing to experiment a project-based learning.

Services

The SKIL and SPOT are mainly an infrastructure (building and equipment) where the students can realize their project. The staff is present for advice and to guide the students during the realization phases, but the main goal is that the students do themselves. The SKIL and SPOT are also helping the students to be well prepared before going to other EPFL platform such as professional workshops, and other DLL spaces, ...

Major output

Support of:

- Courses and semester projects
- >20 MAKE projects
- >7 Act for change Lab projects
- changemakers
- Outreach with the SPS
- EPFL associations and more...

School representation at SKIL

- ENAC: 17%
- SV: 6%
- IC: 3%
- SB: 4%
- STI: 70%

582 students in 2021

Contact

Coordinator SKIL and SPOT
Samuel Cotture

EPFL SKIL
Bâtiment SKIL
Station 18
CH-1015 Lausanne

+41 21 693 37 26
samuel.cotture@epfl.ch
ENAC Technical Platform

Mechanical and electro-technical technical platform
The facility

Platform set up at the initiative of the Dean’s Office in 2017 and bringing together the former GC, GR and LESO-PB workshops. Our services are invoiced and eligible with the NSF since 2019. Our team consists of 10 technicians (mechanics, engineers and, apparatus builder) as well as 2 polymechanics apprentices.

Key target groups

We work in priority for all the laboratories of ENAC and in the second place for the other units of the School. As far as our availability allows, we also carry out some external mandates (universities).

Services

Number of projects

<table>
<thead>
<tr>
<th>Year</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>104</td>
</tr>
<tr>
<td>2019</td>
<td>205</td>
</tr>
<tr>
<td>2018</td>
<td>250</td>
</tr>
<tr>
<td>2017</td>
<td>77</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Michel Teuscher

EPFL ENAC-PLTE
GC FO 531 (Bâtiment GC)
Station 18
CH-1015 Lausanne

+41 21 693 23 64
michel.teuscher@epfl.ch
School of Engineering
Technical Platform

Engineering and Manufacturing Services - Partners, Resource and Experts on Prototype Design, Development and Manufacturing
The facility

2 Mechanical Engineers
1 IC Engineer
1 polymechanic

CAD Softwares:
• CATIA
• SolidWorks
• Cadence
• EDA Tools and Design Kits

Key target groups

Provide Engineering services to:
• EPFL and partner universities
• Laboratories
• Teaching Projects
• Make Projects
• Post-Doctoral, Doctoral, Master, Bachelor projects

In addition to consulting services, the unit PAT-GE is supervising all workshops of STI

Services

Consult on phases from concept to manufacturing prototype:
• Requirements and specifications
• Brainstorming for ideas
• Feasibility
• Advices
• Support design of devices:
 • Participate to design phases
 • Provide feedback on design of devices for manufacturing, maintenance, reliability, safety
 • Propose Detailed Design
 • Decision on manufacturing in house or outsourcing
 • Improving on existing devices
 • Bespoke lab testing equipment and hardware

Contact

Head of PAT
Bertrand Lacour

EPFL STI SGM-GE
ME A2 390 (Bâtiment ME)
Station 9
CH-1015 Lausanne

+41 21 693 99 52
bertrand.lacour@epfl.ch
Additive Manufacturing Workshop

Professional 3D Printing of Mechanical Parts
The facility

2 Employees

6 Different 3D Printing Machines:
- FDM STRATASYS Fortus 450mc
- MJM Connex 500
- SLA-DLP Envisiontec Perfactory P4 Mini XL
- SLS-Fusion EOSINT P 395
- FDM STRATASYS F370
- Stratasys Polyjet J55 Prime

Key target groups

Provide Manufacturing and Engineering services to:
- EPFL and partner universities
- Laboratories
- Teaching Projects
- Make Projects
- Post-Doctoral, Doctoral, Master, Bachelor projects
- External customers and startups

Services

3D printing using different techniques:
- FDM (Fused Deposition Modelling) 406 x 355 x 406mm
- MJM (Multi Jet Modelling) 490 x 390 x 200mm
- SLA-DLP (Stereolithography-Digital Light Processing) 115 x 72 x 220mm
- SLS-Fusion (Selective Laser Sintering) 340 x 340 x 600mm
- Multi-materials Jet Modelling 174cm² Round x 190mm

Consulting on design and manufacturing for 3D Printing

Number of customers

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>71</td>
</tr>
<tr>
<td>2020</td>
<td>64</td>
</tr>
<tr>
<td>2019</td>
<td>99</td>
</tr>
<tr>
<td>2018</td>
<td>65</td>
</tr>
<tr>
<td>2017</td>
<td>91</td>
</tr>
<tr>
<td>2016</td>
<td>88</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Manuel Leitos

EPFL STI PAT AFA
ELE 040 (Bâtiment ELB)
Station 11
CH-1015 Lausanne

+41 21 693 46 38
manuel.leitos@epfl.ch
Printed Circuit Board Workshop

Design, Routing, Prototyping and Manufacturing of Printed Circuit Boards
The facility

3 Employees

- Electroplating chain
- Laminator
- Photoplotter
- Laser Direct Imager
- Developer
- Semi-automatic Pick & Place
- Micro Placer
- Rework station
- 3D microscope
- Vapor Phase Oven
- Copper Etching Line – Pill
- UV exposure unit
- Drilling/Milling CNC

Key target groups

Provide Manufacturing and Engineering services to:

- EPFL and partner universities
- Laboratories
- Teaching Projects
- Make Projects
- Post-Doctoral, Doctoral, Master, Bachelor projects

Services

- Simple or multi-layer PCB design, routing and layout
- Generation of production files.
- PCB manufacturing
- Prototyping
- Assembly
- Photo laser tracing
- Manufacture of thin parts of various materials such as epoxy, copper alloy, etc.
- Chemical etching

- Introductory course on the manufacture of PCBs
- Initiation laboratory and self-service facility
- Manufacturing advice
- Leadtime to manufacture a PCB: 8 days

Number of customers

<table>
<thead>
<tr>
<th>Year</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>41</td>
</tr>
<tr>
<td>2020</td>
<td>35</td>
</tr>
<tr>
<td>2019</td>
<td>46</td>
</tr>
<tr>
<td>2018</td>
<td>44</td>
</tr>
<tr>
<td>2017</td>
<td>59</td>
</tr>
<tr>
<td>2016</td>
<td>57</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Marcel Groccia

EPFL STI ACI
ELE 031 (Bâtiment ELE)
Station 11
CH-1015 Lausanne

+41 21 693 26 54
marcel.groccia@epfl.ch
Mechanical Engineering Workshop

Bespoke Mechanical Design and Manufacturing
4-5 Axis CNC Machining of Complex Parts
Metrology
The facility

7 Employees – 2 Apprentices

Milling:
• Fehlmann Picomax 56L (4 axis)
• Hedelius C50 (4 axis)
• Hermle C 250, C 400 (5 axis)
• Schaublin 53, 53N

Lathes:
• Cazeneuve HB 500
• Colchester Triumph 2000
• Nakamura AS200L (4 axis)
• Schaublin 102, 135, 150, 180 CCN (4 axis)

Various flat milling, planing, drilling, folding, sawing and other machines

3D Metrology Machine COORD3-HERA
Welding, brazing

3D Measurement with Hexagon Absolute
Arm 7 axis Measuring Arm & Laser scanner
Welding, brazing

Key target groups

Provide Manufacturing and Engineering services to:
• EPFL and partner universities
• Laboratories
• Teaching Projects
• Make Projects
• Post-Doctoral, Doctoral, Master, Bachelor projects

Services

• Mechanical Engineering Consulting
• 5 axis machining
• CNC Milling: machining of complex skew surfaces, 3D shapes, moulds
• CNC Turning: 4 axis machining of complex solids of revolution
• Conventional milling, turning, drilling for quick turnaround
• Flat and cylindrical grinding
• 3D Measurement: surface point sensing and numerical comparison
• Reverse engineering: 3D laser scanning of surfaces
• Aluminium and stainless steel TIG Welding, brazing, spot welding
• Apprenticeships for CFC polymechanics
• Participation to Mechanical Design Classes

Number of customers

<table>
<thead>
<tr>
<th>Year</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>61</td>
</tr>
<tr>
<td>2020</td>
<td>57</td>
</tr>
<tr>
<td>2019</td>
<td>71</td>
</tr>
<tr>
<td>2018</td>
<td>58</td>
</tr>
<tr>
<td>2017</td>
<td>65</td>
</tr>
<tr>
<td>2016</td>
<td>41</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Maxime Raton
EPFL STI ATME
ME C1 406 (Bâtiment ME) Station 9
CH-1015 Lausanne
+41 21 693 59 90
maxime.raton@epfl.ch
MicroTechnique Workshop

5 Axis CNC machining of Complex Small Parts
5 Axis Laser Cutting – Diamond Turning
The facility

6 Employees

Laser Cutter:
• DMG Lasertec 20

Milling:
• Fehlmann VERSA 645 linear (5 axis)
• Brother Speedio S500X1 (5 axis)
• DMG ECO 635v (3-4 axis)

Lathes:
• Tsugami M06 SYE (4 axis)
• Schaublin 632-Y (4 axis)
• Nanotech Diamond Turning 250 UPL

Heat Treatments with Nabertherm furnace
Various flat milling, planing, drilling, sawing and other machines

Key target groups

Provide Manufacturing and Engineering services to:
• EPFL and partner universities
• Laboratories
• Teaching Projects
• Make Projects
• Post-Doctoral, Doctoral, Master, Bachelor projects

Services

• Mechanical Engineering Consulting
• 5 Axis Laser Cutting (up to 2.5mm thick stainless steel)
• CNC Milling: 5 axis machining of complex small parts
• CNC Turning: machining of complex solids of revolution
• High Precision Diamond Turning
• Conventional milling, turning, drilling for quick turnaround
• Flat and cylindrical milling

Number of customers

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>52</td>
</tr>
<tr>
<td>2020</td>
<td>60</td>
</tr>
<tr>
<td>2019</td>
<td>69</td>
</tr>
<tr>
<td>2018</td>
<td>75</td>
</tr>
<tr>
<td>2017</td>
<td>78</td>
</tr>
<tr>
<td>2016</td>
<td>57</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Alfred Thomas

EPFL STI ATPR
ELH 018 (Bâtiment ELH)
Station 11
CH-1015 Lausanne

+41 21 693 38 19
alfred.thomas@epfl.ch
Materials Workshop

Electro-Erosion and Waterjet Cutting
5 Axis CNC Machining of Complex Parts
The facility

5 Employees – 2 Apprentices

EDM:
• AgieCharmilles Form 20
• Fanuc Wire Robocut α-0B, α-C400iA

Waterjet Cutting:
• OMAX 5555

Milling:
• Aciera F5, Schaublin 53N
• Haas DT-1 (4 axis)
• VF-2SSYT (5 axis)
• UMC-500 (5 axis)

Lathes:
• Haas ST-10Y (4 axis)
• Haas ST-20SSY (4 axis)
• Reiden R 200 – 2
• Schaublin 102 N – VM, 125 VM, 150

Various flat milling, grinding, drilling, sawing, folding and other machines - Welding, brazing

Key target groups

Provide Manufacturing and Engineering services to:
• EPFL and partner universities
• Laboratories
• Teaching Projects
• Make Projects
• Post-Doctoral, Doctoral, Master, Bachelor projects
• DLL (Practical Work for students)

Services

• Mechanical Engineering Consulting
• 2 or 4 axis EDM (Electroerosion)
• Waterjet Cutting of complex 2D shapes and numerous material types
• CNC Milling: 5 axis machining of complex skew surfaces, 3D shapes, moulds
• CNC Turning: 4 axis machining of complex solids of revolution, specimens for material testing
• Conventional milling, turning, drilling for quick turnaround
• Flat and cylindrical grinding
• Aluminium and stainless steel MIG/MAG/TIG Welding, brazing, spot welding
• Ceramic Cutting
• Vacuum Pump Maintenance
• Apprenticeships for CFC Polymechanics

Number of customers

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>54</td>
</tr>
<tr>
<td>2020</td>
<td>38</td>
</tr>
<tr>
<td>2019</td>
<td>58</td>
</tr>
<tr>
<td>2018</td>
<td>43</td>
</tr>
<tr>
<td>2017</td>
<td>55</td>
</tr>
<tr>
<td>2016</td>
<td>67</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Pierre-André Despont

EPFL STI ATMX
MXE 1221 (Bâtiment MXE)
Station 12
CH-1015 Lausanne

+41 21 693 29 65
pierre-andre.despont@epfl.ch
Electronic and Mechanical Engineering Workshops Platform

Technical development and engineering design, production, optimization and support
The facility

18 staff members
- 9 Technical Employees
- 5 Electronic Engineers
- 4 Polymechanic Trainees

Technical instruments
- Conventional Lathe
- Precision drilling and milling machines
- CNC multiaxis (3 to 6 axis)
- Electro-erosion
- Ultrasonic technology
- 3D printing machines
- Welding machines (Tig, plasma)

Key target groups

More than 700 users, from academic research groups of ISIC-SB but as well from STI, SV and ENAC in Valais Wallis.

More than 52 laboratories active in:
- Analytical Chemistry (ISIC)
- Chemical Engineering (ISIC)
- Inorganic Chemistry (ISIC)
- Organic Chemistry (ISIC)
- Physical Chemistry (ISIC)
- Renewable Energy (ISIC)
- Engineering (STI – Sion)
- Neuroscience (SV – Sion)
- Environmental Engineering (ENAC - Sion)

Services

- Project development, prototyping, consultation and technical advice.
- Design & production of small and medium size instruments for research projects.
- Modification and optimization of existing equipment.
- Repairing, support and maintenance of scientific equipment.
- Automation of data processes and acquisition.
- Providing small consumables such as batteries, extension cables, electric appliances.

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>700</td>
</tr>
<tr>
<td>2020</td>
<td>600</td>
</tr>
<tr>
<td>2019</td>
<td>600</td>
</tr>
<tr>
<td>2018</td>
<td>700</td>
</tr>
<tr>
<td>2017</td>
<td>700</td>
</tr>
</tbody>
</table>

Contact

Head of unit
André Fattet
EPFL SB ISIC-EMEWP
CH J1 492 (Bâtiment CH)
Station 6
CH-1015 Lausanne
+41 21 693 61 12
andre.fattet@epfl.ch
The largest academic clean room in Europe where users carry out controlled processing of micro- and nanoscale structures
The facility

1'400 m² of clean room
214 FTE dedicated staff members

Over 20 years of expertise

Over CHF 50 M scientific equipment:
- E-Beam Writer
- DUV Stepper
- Photolithography
- Etching
- Thin films
- Metrology
- Packaging

Key target groups

- 600 Users
- 100 laboratories

Many EPFL laboratories:
- School of STI: IBI, IEL, IGM, IMT, IEM
- School of FSB: IPHYS, ISIC, SPC
- School of FSV: BMI, GHI, IBI, ISREC
- School of ENAC: IIC IIE

External:
- AMI, CERN, CSEM, EMPA, ETHZ, PSI, UNIGE, UNIFR, WYSS, CHUV

60 start-ups, SMEs, large companies

Services

Over 100 scientific equipment covering a very wide range of processes
- World-renowned professional infrastructure
- Process technology expertise
- Customized training
- Daily personalized support in the specific field of activity of each user
- Technical expertise of the equipment
- Security and safety

Major publications

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal</th>
<th>Academic</th>
<th>Industrial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td>560</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td>491</td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td>546</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td>525</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td>512</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td>532</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td>487</td>
</tr>
</tbody>
</table>

Contact

Operational director
Dr. Philippe Flückiger

EPFL CMI
BM 1124 (Bâtiment BM)
Station 17
CH-1015 Lausanne

+41 21 693 66 95
philippe.fluckiger@epfl.ch
Electronic and Mechanical Engineering Workshops
Development, construction, assembly of original and complex components of scientific installations
The facility

14 dedicated staff members

- Over 45 years of experience and practice.
- The mechanical workshops of IPHYS are equipped with several types of machines and have significant know-how in several fields of application such as:
 - Project studies and designs
 - Conventional and CNC 3, 4 and 5-axis milling and turning (large machining capacities)
 - TIG and Plasma welding
 - Laser cutting (Plexiglas, wood, cardboard but not metal)
 - EDM machining equipments
 - Various measurements and assemblies
 - Training of apprentices

Key target groups

More than 400 users

- 47 IPHYS laboratories.
- Support for specific EDM works: STI, ISIC, SPC, ENAC.
- Support in specific laser cutting works: STI, ISIC, SPC, Startups.

Services

- Studies, designs and technical advices in relation to your project.
- Support and technical advices to doctoral students in their research projects and Masters.
- Expertise in UHV and cryogenics components.
- Expertise in development and construction (CAD CAM).
- Assembly of complex systems (mounting, gluing, welding, etc.).

Contact

Head of Unit
Gilles Grandjean
EPFL SB IPHYS IPHYS-AT-PH
PH A1 382 (Bâtiment PH) Station 3
CH-1015 Lausanne
+41 21 693 33 30
gilles.grandjean@epfl.ch

Head of Unit
Alain Pinard
EPFL SB IPHYS-AT-BSP
BSP 210.2 (Cubotron UNIL)
Rte de la Sorge
CH-1015 Lausanne
+41 21 693 04 78
alain.pinard@epfl.ch
Clean Room of micro and nano fabrication

Cleanrooms of the School of Basic Sciences managed by the Institute of Physics «IPHYS». Micro-nano-fabrication facilities for advanced research projects.
The facility

180 m² of clean room
2.0 FTE dedicated staff members
Over 25 years of expertise

Over CHF 2.3 M scientific equipment:
- Deep-UV Photolithography
- Dry-Etching
- Thin films deposition
- Metrology / Characterization

Key target groups

- 90 Users
- 31 laboratories

Many EPFL laboratories:
- School of SB: IPHYS, ISIC, SPC
- School of STI: IBI, IEL, IGM, IMX, IMT
- School of SV: BMI, GHI, IBI, ISREC
- School of ENAC: RESSLAB

External: CERN, CSEM, EMPA, UNIGE, UNI SUSSEX

24 startups, PME, large companies

Services

20 scientific tools covering a wide range of processes.
- Professional infrastructure-Expertise in process technology
- Customised training
- Daily support tailored to the specific field of activity of each user.
- Technical expertise in equipment
- Safety and security

Major publications

2. A. Siddharth, T. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photonics 7, 046108 (2022)

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>EPFL</th>
<th>Academic</th>
<th>External</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>2019</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>2018</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>2017</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>2016</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>2015</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Nicolas Leiser
EPFL SB IPHYS-CRP
PH D3 385
Station 3
CH-1015 Lausanne
+41 21 693 34 26
nicolas.leiser@epfl.ch
Micro-manufacturing Science and Engineering Center

Technology platform for research in free-form manufacturing technologies for micro-engineering applications and smart systems
The facility

Laser powder bed fusion metal 3D printing
- D 100 mm x H 100 mm building volume
- Precious and reactive metals capable
- 200 Watt, D 30 µm, 1070 nm laser spot

Femto-second laser source and platform
- 100 W with 2nd & 3rd harmonics
- 220 mm XY and 6 mm Z high-precision platform

Pick & place tool micro-assembly tool
- 6 + 1 DoF hexapod platform for placing and bonding
- < 10µ precision

Additional equipment for covering the whole value chain in high-precision free-form manufacturing to come in 2022 (material preparation, fabrication tools and characterization instruments)

Key target groups

EPFL and CSEM researchers active in:
- Metallurgy and materials science,
- Design for Additive Manufacturing,
- Multi-material free-form manufacturing,
- Functional integration & customization
- High-precision assembly,

In parallel, thanks to the capabilities provided by its partners and the technology platform, the M2C aims to foster multidisciplinary projects and collaborations between industry and academia

Services

- Design for Additive Manufacturing,
- Fabrication of 3D printed samples in a large variety of metals and alloys,
- Fabrication of 3D printed samples combining polymers and conductive tracks,
- Free form manufacturing and processing in transparent materials,
- Surface nano & micro-structuring,
- Micro assembly on complex topographies,
- Physical characterization of materials
- Mechanical characterization of parts from submicron to cm scales

Contact

New facility, no data available yet
The PTBET started its activities in Spring 2021 with the goal to enable translational research through bioengineering and technology.
The facility

- The PTBET aims to serve as a bidirectional bridge between the biomedical and EPFL research communities.
- As a center of expertise in translational bioengineering, the PTBET facility aims to enable innovation, support research and federate the wider interdisciplinary community active in translational bioengineering.
- The facility encompasses educational activities, research and development, and an open-access facility infrastructure to support your research needs.

Key target groups

- Located in the AGORA Cancer Research Center next to the CHUV hospital in Lausanne, the facility caters to translational researchers from the partner institutions: EPFL, CHUV, Unil, HUG, UniGe and Ludwig Cancer Research.
- The facility welcomes externa partners from pharma, industry and start-ups.

Services

- Advanced cellular models development: organoids, organ-on-chips, and tissue explants.
- Microphysiological and microfluidic systems: design, prototyping and implementation.
- Assay developments: biological process automation, long-term timelapse 3D high-content and high-throughput imaging.

Contact

Head of unit
Dr. Gaspard Pardon
EPFL BioEngineering & Technology platform
AGORA Cancer Research Center
Rue du Bugnon 25A - 4/212
CH-1005 Lausanne
+41 21 693 83 10
gaspard.pardon@epfl.ch
Dubochet Center for Imaging

The Dubochet Center for Imaging provides outstanding cryo-electron microscopy technologies with high-resolution data collection and fast image processing.
The facility

4 cryo-EM specialists with more than 10 years of experience

We are open since 22 November 2022

3 microscopes at the Lausanne campus
- 2 Titan Krios G4 (300kV, C-FEG, SelectrisX, Falcon4) for high-resolution data collection
- 1 Glacios (200kV, X-FEG, Falcon4) for high-throughput screening

3 microscopes at DCI-Geneva campus
- G2 Sphera (200KeV, LaB6)
- Talos L120C (120 KeV, LaB6)
- Talos Arctica (200 KeV, X-FEG)- 1 TEM

Key target groups

- >300 Users
- PIs: group leaders, professors
- Researchers at EPFL/UNIL/UNIGE: postdocs, staff scientists,
- Students at EPFL/UNIL/UNIGE: bachelor, master and PhD level.

Additional groups:

- Scientists from Switzerland and EU
- Pharmaceutical Companies

Services

- Optimization of freezing conditions
- Advice on use of electron microscopy for targeted research questions.
- Training on electron microscopes and data processing software.
- Electron microscopy “full-services” (sample preparation, freezing optimization, high-resolution data collection, structure and model building
- Organization of theoretical/practical courses and project-oriented training
- On-the-fly image processing

Major publications

Contact

Operational director
Dr. Alexander Myasnikov

DCI-GE
BSP 407 (Cubotron UNIL)
Rte de la Sorge
CH-1015 Lausanne

+41 21 693 04 44
alexander.myasnikov@epfl.ch
Interdisciplinary Centre for Electron Microscopy

Imaging and Spectroscopy for characterisation of materials, cells and molecules
The facility

9.7 dedicated staff members
Over 40 years of expertise

14 microscopes on the Lausanne campus
- 3 SEM
- 7 TEM
- 3 FIB
- 1 CL SEM

2 microscopes on the Sion campus
- 1 SEM
- 1 TEM

Services

Advice on use of electron microscopy for targeted research questions, training on electron microscopes and data processing software.

- **Feasibility studies**: evaluation on feasibility, demonstration of sample preparation, setting up of new/customized experimental procedures and initial measurements. Scientific support for data processing and data analysis. Mostly for short projects and/or risky/new projects (researchers and PIs).
- Electron microscopy “full-services” (sample preparation, conduction of experiments and data processing/analysis)
- **Students**: theoretical courses and project-oriented training, regular courses

Key target groups

- 300 Users
- PIs: MER, group leaders, professors
- Researchers at EPFL: postdocs, staff scientists, MER
- Students at EPFL: bachelor, master and PhD level.

Additional groups:
- Scientists at Swiss or other Universities
- Companies

Major publications

3. Marco Cantoni and Lorenz Holzer. *Advances in 3D focused ion beam tomography*, MRS BULLETIN • VOLUME 39 • APRIL 2014, DOI

Number of user

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal</th>
<th>Academic</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>213</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact

Operational director
Dr. Marco Cantoni

EPFL CIME
MXC 132 (Bâtiment MXC)
Station 12
CH-1015 Lausanne

+41 21 693 48 16
marco.cantoni@epfl.ch
The PTBIOP facility provides cutting edge instrumentation and expertise in light microscopy and image analysis.
The facility

PTBIOP’s team is composed of 7 (6.7 FTEs) specialized staff members.

The PTBIOP provides access to cutting edge light microscopes covering in particular the needs of scientists in life sciences:

- 7 point scanning confocal microscopes
- 2 multiple beam scanning confocal microscopes
- 3 wide-filed scopes equipped for live cell imaging
- 2 slide scanners
- STED, SiM, FLIM, STORM setups
- Light-sheet and Lattice light-sheet systems
- 4 image processing work-stations

Key target groups

- Around 400 users per year including Master students, PhD students, postdocs and senior scientists
- 90 different laboratories including EPFL faculties of SV, STI, SB, ENAC and scientists from Swiss universities and companies.

Services

- The PTBIOP provides high level expertise in light microscopy and state of the art image analysis tools.
- The team offers training and consultation on designing, running and analyzing experiments using light microscopy.
- The team also participates in the teaching of multiple Master and PhD courses in microscopy and image processing.

Major publications

Instrument usage hours

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>31379</td>
</tr>
<tr>
<td>2019</td>
<td>33799</td>
</tr>
<tr>
<td>2018</td>
<td>34617</td>
</tr>
<tr>
<td>2017</td>
<td>30737</td>
</tr>
<tr>
<td>2016</td>
<td>28606</td>
</tr>
<tr>
<td>2015</td>
<td>26612</td>
</tr>
</tbody>
</table>

Contact

Head of unit
Dr. Arne Seitz
EPFL SV PTECH PTBIOP
AI 0241 (Bâtiment A1)
Station 15
CH-1015 Lausanne

+41 21 693 96 18
arne.seitz@epfl.ch
VP-AVP Centers & Platforms

Center for Biomedical Imaging
Multimodal Imaging (MRI, PET, Microscopy) and Spectroscopy (EEG, MRS, EPR, UV-Vis-NIR) for Clinical and Preclinical interdisciplinary studies
The facility

CIBM is an inter-institutional research center and platform founded in 2004 by EPFL, UNIL, UNIGE, CHUV and HUG. The 30 dedicated staff members provide expertise in EEG, MRI, PET, Signal Processing and access to state-of-the-art infrastructure.

EPFL:
- 7T MRI (head only)
- 9.4T MRI, 14.1T MRI
- MR Spectroscopy
- RF Technology lab for MRI coil development
- Neurochemistry Lab with P2 subunit, 2 high-resolution Brightfield & Fluorescence microscopes and bench-top EPR EMXnano

CHUV: 3T MRI, EEG ---> 0.55T MRI arriving in 2023

HUG: 3T MRI, PET

UNIGE: 3T MRI, EEG

Campus Biotech: 7T MRI (full body CE marked)

Key target groups

Researchers, scientists, academics and clinicians, as well as students at the bachelor, master and PhD level from EPFL, UNIL, UNIGE, CHUV and HUG.

Additional groups:
- Other Swiss and international academic Institutions
- Start-ups, SME and MultiNational Companies (MNC)

Services

- Advice on project feasibility, practical training on use of the equipment and safety rules, set-up of protocols and experiments, data acquisition and analysis, as well as data management
- Set-up of fMRI and PET paradigms
- Spectroscopy acquisition, analysis and interpretation
- Supervision and analysis of MR spectroscopy and fMRI for clinical diagnosis or presurgical evaluation
- Advice and administration of the regulatory and ethical requirements in accordance with Swiss law on human research and animal experimentation
- Provision of professional radiographers for clinical trials
- Provision of veterinarians and animal physiologists for preclinical trials
- Dev. of anesthesia protocols, experim./surgical models
- Molecular/cellular biology expertise and histochemistry/immunohistochemistry
- Disease characterization and modeling
- Preclinical drug testing (MRS/MRI/PET/EPR)
- RF coil development
- Phantom designing for the MRI contrast agent testing, MRS modeling and RF coil testing
- Oxidative stress detection in healthy and disease

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal</th>
<th>Academic</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>188</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact

Operational director
Dr. Pina Marziliano

EPFL AVP CP CIBM
CH F0 612 (Bâtiment CH) Station 6
CH-1015 Lausanne

+41 21 693 05 89
pina.marziliano@epfl.ch
Interdisciplinary Platform for X-ray micro-CT

A new X-ray micro-CT platform dedicated to the visualization and characterization of natural and engineered materials
The facility
- An ultra high performance micro-CT system (Ultratom with dual X-ray tubes 230/160 kV).
- A dedicated technical specialist.
- Expertise with various natural and engineered materials
- Force cells for in situ mechanical testing.
- Dedicated graphical stations for image analysis.
- 3D visualisation and post-processing software with advanced features

Key target groups
EPFL labs or research groups
- PI: professors, MERs, group leaders.
- Researchers: postdocs, scientific collaborators.
- Students: at bachelor, master and PhD levels.

Additional groups:
- Other academic institutions.
- Companies.
- Museums, Art centers,....

Services
- Advice on use of micro-CT for targeted research questions
- Feasibility studies: evaluation on feasibility, sample preparation, setting up of new/customized experimental procedures and measurements.
- Scientific support for data processing and data analysis.
- Students: project-oriented training

Major publications

Contact
Operational Director
Dr. Pascal Turberg
EPFL ENAC SGC-GE
GC A2 435
Station 2
CH-1015 Lausanne
+41 21 693 28 02
pascal.turberg@epfl.ch
The PTBIOEM facility specializes in the preparation and imaging of all types of biological samples using scanning and transmission electron microscopes.
The facility

- The PTBIOEM is part of the Faculty of Life Sciences and is situated in the Life Sciences AI building.
- The facility houses equipment, and space for preparing cells, tissues, and organs for all forms of electron microscopy, as well as 5 (4.6 FTEs) staff expert in all techniques.

Key target groups

The PTBIOEM is used by research groups across the entire EPFL campus needing help in preparing or imaging biological material with electron optics.

Services

The PTBIOEM offers service, training and advice on the preparation and imaging of biological samples with scanning and transmission electron microscopy which is done in collaboration with the Interdisciplinary Center for Electron Microscopy.

These projects include techniques such as:
- chemical and cryo-fixation
- Immunocytochemistry
- correlative light and electron microscopy
- block face scanning electron microscopy
- cryo-immuno electron microscopy

Major publications

Number of projects

<table>
<thead>
<tr>
<th>Year</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>23</td>
</tr>
<tr>
<td>2019</td>
<td>30</td>
</tr>
<tr>
<td>2018</td>
<td>29</td>
</tr>
<tr>
<td>2017</td>
<td>32</td>
</tr>
<tr>
<td>2016</td>
<td>32</td>
</tr>
</tbody>
</table>

Contact

Prof. Graham Knott
EPFL SV PTECH PTBIOEM
AI 0143 (Bâtiment AI)
Station 19
CH-1015 Lausanne

+41 21 693 18 62
graham.knott@epfl.ch
The IC Cluster is a flexible infrastructure aiming at offering computing and storage services to researchers. Projected services range from bare-metal to containers.
The facility

The current infrastructure comprises:
• 7500 Cores
• 500 GPUs
• 1.5 PB raw capacity to store datasets readable in S3
• 100 TB of NVMe dedicated to the scratch volume

Nearby the users, the IT Team from IC School helps the researchers to achieve their goals providing customized solutions

Key target groups

IC, CDM and CDH people with a field of research in:
• Artificial intelligence
• Machine learning
• Computer vision
• Signal & image processing
• Data Sciences

Services

Hardware as a Service (HaaS) provides you with a self-service portal to provision physical servers that you can personalize. Root access is possible, giving you full flexibility for the operating system (OS) or packages to install.

Containers as a service (CaaS) provides our researchers to upload, organize, run, scale they workloads using container-based virtualization. With a pay-per-use model our users can quickly allocate and deallocate computational resources.

Statistics

CaaS:
• + 25 labs
• 100 users
• 650 jobs per week
• Workloads between 0-8 GPUs

HaaS:
• Servers with 1.5TB of memory
• 1300 Reservations in 2021
• 250 distinct users

Datasets:
• 25 datasets totalling around 200TB
• Stored on a distributed object store based on Ceph.
• Access is possible using the S3 protocol

Contact

Head of unit
Christopher Roberts

EPFL IC-DO
BC 405 (Bâtiment BC)
Station 14
CH-1015 Lausanne

+41 21 693 52 36
christopher.roberts@epfl.ch
Scientific IT & Application Support

Provides access to scientific equipment, operational expertise as well as professional software development in high-performance computing
The facility

- **30k cores and 148 GPUs available** for massively parallel, state of the art computing resources for scientific computing and HPC
- **19.45 FTE dedicated staff members** with over 10 years of expertise

Key target groups

100+ EPFL labs, 750+ Users from:
- Fundamental Sciences and Engineering
- Artificial intelligence, Machine learning
- Life Sciences
- Visualization and Data Sciences
- Master and Ph.D. students

Services

Maintenance and access to high-performance hardware:
- server-grade microprocessors and GPUs
- high bandwidth, low latency network
- 6 PB of high throughput, shared, parallel filesystem for storage
- User oriented performance software ecosystem
- Professional high-performance software development and engineering services
- Gateway for national and international resource access

Major publications

4. S. Zhang et al. *Numerical evaluation of test setups for determining the shear strength of masonry*, Materials and Structures, 2018

Contact

Operational director
Dr. Gilles Fourestey

EPFL SCITAS
ME B2 464 (Bâtiment ME) Station 9
CH-1015 Lausanne

+41 21 693 22 88
gilles.fourestey@epfl.ch

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>984</td>
</tr>
<tr>
<td>2020</td>
<td>768</td>
</tr>
<tr>
<td>2019</td>
<td>733</td>
</tr>
<tr>
<td>2018</td>
<td>668</td>
</tr>
<tr>
<td>2017</td>
<td>548</td>
</tr>
<tr>
<td>2016</td>
<td>235</td>
</tr>
</tbody>
</table>
The BICC, which started its activity in 2019, has the expertise to offer and develop customized data analysis that go beyond standard protocols.
The facility

- an inter-institutional Center part of the Faculty of Life Sciences (EPFL) and Faculty of Biology and Medicine (UNIL).
- Its main mission is to offer researchers at UNIL, EPFL, and their partner institutions access to highly qualified resources in the field of bioinformatics for all aspects related to treatment and analysis of data.
- It is situated in AAB and Genopode buildings.
- The facility is composed of 12 persons (8 FTE), providing services for punctual as well as long term collaborative research.

Key target groups

- Groups which lack internal bioinformatics support or require specialized skills not found internally
- Data generation platforms which require help with bioinformatic setup or support
- So far groups mostly from UNIL, EPFL and CHUV used our services, with occasional users from UNIBE, UNIGE and other academic institutions.

Major publications

Number of users

<table>
<thead>
<tr>
<th>Year</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>32</td>
</tr>
<tr>
<td>2019</td>
<td>20</td>
</tr>
</tbody>
</table>

Services

The BICC is currently dealing with requests as diverse as the analysis of RNAseq data, methylation, ChipSeq, Hi-C, alternative splicing, genome assembly, the analysis of flow or mass cytometry data, the analysis of the effects of mutations on proteins, the detection of mutations in tumors, proteomics, lipidomic, metabolomics, some image analysis projects, as well as various data formatting, aggregation and presentation, for example as custom websites.

Contact

Co-head of unit
Dr. Christian Iseli

EPFL SV PTECH BICC
AAB 0 17 (Bâtiment AAB)
Station 19
CH-1015 Lausanne

+41 21 693 75 36
christian.iseli@epfl.ch
SUpraLeiter TestAnlage

Characterization and qualification of high magnetic field, forced flow, high current density superconductors
The facility

World-wide largest magnet test facility with magnetic field up to 11 Tesla
- Hosted by the Paul Scherrer Institut in Villigen (Argovia) and run by EPFL
- 40 years of experience in facility operation and related R&D
- 20 individuals involved in sample preparation, facility operation and maintenance
- Typically 1 sample test per week
- Operated up to 40 weeks per year

Key target groups

- Reference facility for the qualification of the Nb3Sn superconductors of the ITER tokamak (manufactured in Europe, China, Japan, Korea, Russia and the USA)
- Other public (e.g. CFETR/CRAFT in China) and private (e.g. CFS/SPARC in the USA) initiatives addressing the challenges for the realization of fusion energy
- Research infrastructures employing strong magnets (e.g. particle accelerators for CERN)
- Industry (conductor manufacturers)

Services

- Technology hub for the testing and evaluation of the characteristics of high current superconducting cables
- R&D in the area of low (LTS) and high-temperature superconductivity (HTS)
- Major contributor to the research and development effort for the magnets of the future DEMO fusion plant (EUROfusion Consortium)

Facility use (weeks)

<table>
<thead>
<tr>
<th>Year</th>
<th>Scientific</th>
<th>France (ITER)</th>
<th>EU (ITER)</th>
<th>USA (ITER)</th>
<th>China (ITER)</th>
<th>Japan (ITER)</th>
<th>Korea (ITER)</th>
<th>Russia (ITER)</th>
<th>USA (SPARC)</th>
<th>China (CFETR)</th>
<th>EU (DEMO)</th>
<th>CH (EPFL)</th>
<th>CERN (FCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Contact

Scientific
Dr. Kamil Sediak
EPFL
Supraconductivite
Building WMHA/C35
Forschungsstrasse 111
CH-5232 Villigen PSI

+41 56 310 35 64
kamil.sediak@epfl.ch
Tokamak à Configuration Variable

Exploration of the physics of magnetic confinement Technology test bed for the development of fusion energy
The facility
Largest asset at EPFL, 30 years of experience in facility operation
One of the very few national fusion reactors in Europe selected to implement the European Roadmap to Fusion Energy
- Most flexible (experimental/ operational) mid-size tokamak worldwide
- ~75 individuals involved in operation
- ~70 state-of-the are diagnostic systems

Key target groups
Scientists in plasma physics from the EPFL Swiss Plasma Center, the EUROfusion Consortium and other international projects of the fusion community
Education of PhD students in fusion and training of operators from other facilities (e.g. the ITER project)

Services
- Experimental campaigns aiming at exploring plasma performance, real time control, plasma heating et cetera to improve the tokamak concept
- Hub to test new fusion technologies, plasma diagnostics and actuators
- Prepare the physics basis for the ITER and DEMO projects

Major publications
1. C. Theiler et al., «Results from recent detachment experiments in alternative divertor configurations on TCV», Nucl. Fusion 57, 072008 (2017).
5. H. Reimerdes and the TCV Team, «Overview of the TCV tokamak experimental programme», Nucl. Fusion 62, 042018 (2022)

Contact
Senior scientist
Dr. Stefano Coda
EPFL SB SPC-TCV
PPB 225 (Bâtiment PPB)
Station 13
CH-1015 Lausanne
+41 21 693 34 63
stefano.coda@epfl.ch

Number of users
<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-2021</td>
<td>238</td>
</tr>
<tr>
<td>2018-2019</td>
<td>268</td>
</tr>
<tr>
<td>2016-2017</td>
<td>197</td>
</tr>
<tr>
<td>2014-2015</td>
<td>92</td>
</tr>
</tbody>
</table>

Domestic
Foreign